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Abstract. Where spatial boundaries between phenomena are diffuse, 

classification methods which construct mutually exclusive clusters 

seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each 

observation to all clusters, with membership values as a function 

of distance to the cluster center. The FCM algorithm is applied 

to AVHRR data for the purpose of classifying polar clouds and 

surfaces. Careful analysis of the fuzzy sets can provide 

information on which spectral channels are best suited to the 

classification of particular features, and can help determine 

likely areas of misclassification. General agreement in the 

resulting classes and cloud fraction was found between the FCM 

algorithm, a manual classification, and an unsupervised maximum 

likelihood classifier. 
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Cloud Classification from Satellite Data 
Using a Fuzzy Sets Algorithm: a Polar Example 

1. Introduction 

Cloud detection and classification from satellite remote 

sensing data has received considerable attention in view of the 

significance of cloud cover for global climate. Various techniques 

are reported in the literature based on threshold, bispectral, 2- 

d or 3-d histograms, and split-window methods. Smith (1981) and 

Crane and Barry (1984) summarize these procedures. From a 

classification standpoint, most current approaches seek to 

designate mutually exclusive classes with well defined boundaries; 

these are termed Ilhard" classifications. Clustering algorithms 

used in such classifications are commonly based on either the 

Euclidean distance measure (e.g., Parikh 1977; Desbois et al. 1982) 

or the maximum likelihood classifier (e.g., Bolle 1985; Pairman and 

Kittler 1986; Ebert 1987). Areas where cloud identification is 

uncertain are usually treated by forcing them into existing 

classes, or leaving them unclassified. 

Our particular interest in cloud conditions in polar regions 

indicates that this approach is especially undesirable where the 

spectral characteristics of the clouds and the underlying surface 

frequently overlap. Where cloud categories are poorly defined and 

the spatial boundaries between them are diffuse, it seems 

appropriate to represent this uncertainty in the taxonomic 

strategy. 
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The purpose of this study is to examine the applicability of 

the fuzzy sets approach to the classification of clouds from 

satellite data. In contrast to hard classifiers, the fuzzy sets 

approach assigns each observation to every class, with the strength 

of the membership being a function of the its similarity to the 

class mean. Fuzzy clustering was introduced by Ruspini (1969) and 

was later developed into the fuzzy c-means algorithm by Dunn (1974) 

and generalized by Bezdek (1975). Previous applications of the 

procedure to climatic data are limited to McBratney and Moore 

(1985) where the fuzzy c-means algorithm was appliedtotemperature 

and precipitation data, and Leung (1987) who took a linguistic 

approach to describing the imprecision of regional boundaries. 

There has been an increasing use of fuzzy set theory and fuzzy 

algorithms with digital images (e.g., Huntsberger et al. 1985, Pal 

and King 1983), but these procedures have not yet found their way 

into satellite data processing applications. We do not intend to 

present new information on cloud characteristics, but rather to 

provide an alternative method of dealing with the poorly defined 

boundaries of clouds and surfaces in satellite data. 

2 .  Data 

The AVHRR (Advanced Very High Resolution Radiometer) on board 

the NOAA-7 polar orbiting satellite is a scanning radiometer that 

senses in the visible, reflected infrared, and thermal (emitted) 

infrared portions of the electromagnetic spectrum with a nadir 

resolution of 1.1 km (IFOV of 1.4 milliradians) at a satellite 
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altitude of 833 km. Global Area Coverage (GAC) data provide a 

reduced-resolution product created through on-board satellite 

processing. GAC pixel resolution is used, with each pixel 

representing a 3 x 5 km field of view. Of the five channels 

available (0.58-0.68 pm, 0.725-1.00, 3.55-3.93, 10.3-11.30, 11.5- 

12.50) channels 1, 3 and 5 are employed here. 

First-order calibration of the AVHRR GAC data was performed 

following the methods described in the N O M  Polar Orbiter Users 

Guide ( N O M  1984) and Lauritsen, et al. (1970) . Channel 1 was 

converted to albedo and corrected for solar zenith angle; channels 

3 and 5 were converted to radiance in mW m-' sr" cm. 

3. Example of Polar Clouds and Surfaces 

Determination of the amount of cloud cover is the principal 

objective of cloud classification for the study of ice-atmosphere 

interactions in the polar regions. Secondarily, breakdown of the 

cloud cover into different types, e.g. stratus, cirrus, cumulus 

provides useful information on cloud radiative properties, 

availability of moisture, and source of the cloudiness. To 

determine the amount of cloud requires that the classifier 

discriminate between clouds and underlying surfaces of snow, ice, 

water, and land. Distinguishing between cloud type may require 

information on cloud height (estimated from cloud-top temperature) 

and cloud morphology (related to large-scale patterns or local 

texture). 

The study area is shown in Figure 1 (channels 1, 3, and 5). 



5 

This is a 250x250 pixel or (1250 km)' area centered over Novaya 

Zemlya and the Kara and Barents Seas on July 1, 1984. Open water, 

snow-covered and snow-free land, sea ice (various concentrations), 

and high, middle, and low cloud over different surfaces are present 

in the image. For computational efficiency, means of 2x2 pixel 

cells were used in the classification process, reducing the number 

of pixels from 62,500 to 15,625. A manual interpretation of this 

area is given in Figure 2. 

The problem of distinguishing discrete cloud and surface 

categories is illustrated by Figure 3, which shows scatter plots 

of visible vs. near-infrared and visible vs. thermal data for a 

(1250 km)' segment of the study area. Based on training area 

statistics, the spectral responses of four surface types (snow-free 

and snow-covered land, sea ice, and open water) and three general 

cloud categories (high, middle, and low) are identified in the 

plots by their mean plus and minus two standard deviations in each 

of the two channels. The principal sources of confusion are likely 

to occur between snow/ice and cloud due to their similar responses 

in AVHRR Channel 1 and, to a lesser extent, Channel 2. In the 

thermal channels, similarities exist between the physical 

temperatures of low or thin clouds, ocean, and melting sea ice. 

The data in Figure 1 present several examples of cloud of varying 

optical depth overlying different concentrations of sea ice. In 

addition, the surface conditions of the sea ice (as estimated by 

reflectance and passive microwave emissivity differences) are not 

constant throughout the image. It is clear that the spectral 
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properties of the clouds and ice are not likely to form compact and 

distinct clusters in multispectral space. Hard classifiers are 

required to force these indistinct areas into spectrally similar, 

but perhaps unsuitable, classes. Otherwise, large areas of the 

image will remain unclassified. 

4. Classification using Fuezy Bets 

In the fuzzy sets approach, points do not belong to only one 

class but instead are given membership values for each of the 

classes being constructed. Membership values are between zero and 

one and all the membership values for a given point must sum to 

unity. Memberships close to one signify a high degree of 

similarity between the sample point and a cluster while memberships 

close to zero imply little similarity. 

In this respect, memberships are similar to probabilities. 

However, no assumption of distribution type is made in fuzzy c- 

means (FCM) clustering, and calculations of memberships are not 

based on probability density functions. Theref ore, this 

methodology bears little theoretical relationship to probability- 

based techniques such as maximum likelihood which assumes multi- 

variate normal distributions, or discriminant analysis which is 

based on the general linear model. 

The fuzzy c-means algorithm is neither a '@lumperv' (conjunctive 

or clustering procedure) , which operates by combining small 

clusters into larger clusters, or a "splittervv (disjunctive or 

divisive classification procedure) which begins with all pixels 
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belonging to the same class then subdividing. Instead, in the FCM 

algorithm all pixels begin and end with memberships in each of the 

specified number of clusters; each iteration adjusts these 

memberships to minimize an error function. 

A brief explanation of the FCM procedure is provided below; 

for a more complete description, see Bezdek (1981) and Kandel 

(1982). Following Bezdek et al. (1984) and McBratney and Moore 

(1985), the fuzzy c-partition space is 

n C 

where U is a fuzzy c-partition of a sample of n observations and 

c clusters. Each element of U, Uik, represents the membership of 

a particular observation xk in the ith fuzzy group. Each xk is a 

vector of length p where p is the number of features (e.g. spectral 

channels, texture measures, etc.). These membership coefficients 

are values between 0 and 1 and for each observation sum to one. 

Also, the sum of the membership values for each cluster is greater 

than zero, otherwise the group does not exist. 

Optimal fuzzy c-partitions may be identified with the 

generalized least-squared errors functional 

where U is the fuzzy c-partition of the data, xk, which is a c by 

n matrix with elements uik; V is a c by p matrix where each element 

Vjk represents the mean of the kth of p attributes in the ith of c 
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groups: n is the number of observations; m is a weighting 

component, lcmca, which controls the degree of fuzziness: dik is the 

distance between each observation xk and a fuzzy centroid vi, a 

measure of dissimilarity given as 
1 (djk)' = (xk - Vi) A(X, - vi) 

where A is the inner product norm metric, discussed below. An 

optimal fuzzy c-partition is obtained when J, is minimized. This 

is achieved by the Fuzzy c-Means algorithm, which is given in the 

appendix. 

4 . 1  FCM Parameters 

A number of options are available in the FCM algorithm so that 

the results may be tailored to the problem at hand. These are the 

weighting exponent, initial matrix, A-norm, and computational 

considerations. 

Weiuhtincr emonent.  According to Bezdek et al. (1984), no 

computational or theoretical evidence distinguishes an optimal 

weighting exponent. The range of useful values seems to be [I, 

301 while for most data, 1.5 I m I 3.0 gives good results. In 

choosing values for m, it is important to remember that as m 

approaches unity the partitions become increasingly hard and as m 

approaches infinity the optimal membership for each data point 

approaches l/c. Therefore increasing m tends to increase 

llfuzzinessll. 

McBratney and Moore (1985), applied the fuzzy c-means method 
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to temperature and precipitation data from stations in Australia. 

They tested a range of values for m and found that m=100 yielded 

memberships almost constant at 0.5 for each of two classes 

indicating that clustering was so fuzzy that no clusters would be 

distinguished. They also attempted to identify optimal 

combinations of c, the number of classes, and m by plotting the 

change in the error functional, J,, with m for each number of 

clusters, c. In general, J, decreases with increasing c and m, 

but its rate of change with changing m is not constant. Their work 

showed that, at least empirically, m of approximately 2 is optimal, 

though for a large number of groups m should be less than for a 

smaller number of groups to obtain similar balance between 

structure and continuity. 

I n i t i a l  matrix. The initial U matrix also provides a number 

of options: a random start, a random nonfuzzy start, or an almost 

uniform start. Alternatively, the results from another clustering 

method can be used as the initial matrix. In the random start, 

each membership coefficient is given a random value between zero 

and one. The random nonfuzzy start assigns a membership 

coefficient of one to a randomly chosen class and zero to the 

remaining sets. An almost uniform start is obtained by setting 

each membership to l/c plus or minus a small random component. The 

algorithm presented by Bezdek et al. (1984) employs a random start, 

while McBratney and Moore (1985) found that an almost uniform start 

yielded faster convergence and similar results from different runs. 
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Starting with results from another cluster procedure has not 

previously beentested; in our experimentsthe number of iterations 

needed for convergence was usually reduced by 10-20%. 

It is suggested by Bezdek that the FCM be run for several 

different starting membership matrices since the iteration method 

used, like all descent methods, is susceptible to local 

stagnations. If different starting matrices result in different 

final memberships, further analysis should be made. 

A-nom. A detailed discussion of the geometric and 

statistical implications of the choices of the A-norm is given in 

Bezdek (1981). Three of these norms, Euclidean, diagonal, and 

Mahalanobis, are of interest in FCM. When the Euclidean norm is 

used, J, identifies hyperspherical clusters, but for any other 

norm, the clusters are essentially hyperellipsoidal. A Euclidean 

metric can be used for uncorrelated variables on the same scale, 

a diagonal metric for uncorrelated variables on different scales, 

and Mahalonobis' for correlated variables on the same or different 

scales. 

ComDutational considerations. The fuzzy sets program was not 

originally designed for application to very large data sets such 

as satellite images. The number of computations necessary is a 

function of the number of data items (pixels), the number of 

features, and the number of clusters. The number of data items 

being processed at any one time can be reduced by using a random 
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sample of the entire image, hopefully obtaining a representative 

subset. Clustering local areas of the image with the ultimate goal 

of global description is another possibility. 

No alternative method of calculating cluster centers or 

updating the membership matrix is evident. However, an alternative 

method of error calculation - which controls termination of the 
algorithm - is to compare elements of each cluster center matrix 
from two successive iterations rather than comparing successive 

membership matrices. The cluster center matrix is of dimensions 

c by c rather than n by c for the membership matrix. If n is much 

larger than c, the savings in CPU time are significant. 

Additionally, computer memory would be reduced by approximately 

40%. If this method is chosen, however, data should be on the same 

scale - either originally or standardized to a zero mean and unit 
variance - so that cluster centers can be compared with the same 
error criteria. Of course, relaxing the convergence criterion 

(maximum allowable error: see Appendix, step 4) will reduce the 

number of iterations required. If the channels employed are 

statistically independent, then the number of computations may be 

further reduced by eliminating those involving the A-norm metric, 

which for uncorrelated variables on the same scale would be the 

identity matrix. 

Without these modifications for image processing, 

computational resources are certainly not trivial, as the execution 

of the FCM algorithm on a 125 x 125 pixel area requires 

approximately one hour of CPU time on a DEC VAX 8550 and up to ten 
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hours on a DEC MicroVAX configured for Vypical" user loads. 

Adjustment of system parameters such as working set size can 

significantly reduce disk paging, which will in turn reduce total 

CPU time. With adjustments for large images, computation time can 

be reduced by a factor of ten. 

4.2 Validity functional8 

It is possible to obtain data sets where tAAe error functional 

is globally minimal but where the resulting classes are visually 

unappealing. To aid in the resolution of this problem, two 

validity functionals are used to evaluate the effect of varying the 

number of clusters: the partition coefficient, F, and the entropy, 

H: 

c n  

i=1 k=l 
F = z c (ui,I2/n 

and 

F will take values between l/c and one, while H has a range of zero 

to log,c. When F is unity or H is zero, clustering is hard, while 

an F value of l/c or an H value of log,c implies that memberships 

are approximately l/c. A plot of F or H by the number of groups 

may be examined for local maxima of F or minima of H, which will 

give some indication of optimal c. 



5 .  Results 

The FCM program was applied to the study area in Figure 1 as 

represented by AVHRR channels 1, 3, and 5. A variety of fuzziness 

index values were tested as well as a range in the number of 

clusters. The partition coefficient, F, and entropy, H, for each 

run is listed in Table 1. Run #5 represents an essentially hard 

classification (m=1.25) where F is large and H is small. 

Conversely, the fuzziness index of 2.6 in run #2 resulted in a 

small F and large H. Run #6 produced the least visually appealing 

and least realistic results of all runs. This is supported 

statistically by the minimal F and maximal H. Figure 4 illustrates 

the change in F and H for a varying number of clusters. For these 

tests, m=2.0. A local maximum for F and minimum for H occur at 

c=6, with c=10 also being acceptable. 

A visual examination of the results from each of these tests 

revealed that the 10-cluster solution best identified the cloud 

and surface types present in the scene, therefore an interpretation 

of this solution is given. Figures 5a-5j (hereafter Sets A-J) 

illustrate each of the ten classes where grey level represents 

membership of each pixel in the class, lighter grey shades 

indicating larger membership values. The most distinct 

classifications are shown by the bright areas (high probabilities) 

assigned primarily to land in Set C, sea ice under clear skies (Set 

H), and open water (Set I). The varying gradation of cloud 

conditions are represented in several of the other sets. Sets E 
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and G describe high stratocumulus, Sets A, D, and J show high 

memberships for lower stratus. Thin stratus over ice' is 

represented in Set F. Large memberships in Set B occur for thin 

cloud over water, but also for mixed pixels at land, cloud, and ice 

edges. Areas that are not distinctly classified in a single set 

appear as intermediate gray-tones in several of the sets in Fig. 

6. In particular, the ice cap on Novaya Zemlya is confused with 

thin cloud over ice (Set F), and thicker, higher clouds in Sets A, 

D, E, G, and J. These are areas that - at least for this 

particular algorithm - require additional information to be 

distinguished from other classes. 

The distribution of memberships between the fuzzy sets 

described above presents a convenient graphical tool for 

interpreting the physical properties of clouds and surfaces, and 

thus the potential sources of confusion in multispectral 

classifiers. For example, the similarity between clouds and the 

Novaya Zemlya ice cap in several of the fuzzy sets is apparently 

due to similar albedos and temperatures yielding similar responses 

in AVHRR channels 1 and 5. Interestingly, the ice cap has the 

largest membership in Set F, with memberships similar to the thin 

cloud over ice in the upper-left portion of the image. A physical 

interpretation of the memberships in Set F suggests that the 

combination of thin cloud with an underlying, high-albedo surface 

yields a combined spectral return with physical temperature and 

albedo similar to the Novaya Zemlya ice cap under clear skies. 

If desired, a hard classification can be obtained from the 
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fuzzy sets results where, for each pixel, the largest membership 

value is replaced with a membership of one, while membership values 

for the other classes are set to zero. In this manner, the same 

basic classes will result, but the fuzziness is eliminated. 

5 . 1  Statistical Properties 

The previous discussion pointing out the ability of the fuzzy 

sets to combine multispectral information into individual 

probability sets is suggestive of artificial orthogonal features 

created through principal components analysis. The fuzzy sets are, 

however, simpler to interpret in physical terms since their 

development is not restricted by the objective of creating 

uncorrelated components and maximizing the amount of variance 

accounted for by each component. No attempt is made to include as 

much information as possible in the first few sets created. Unlike 

principal components, the information content of each successive 

fuzzy set does not necessarily decrease. In fact, Sets H and I 

represent two of the most spectrally-distinct classes in the AVHRR 

data. 

These differences between the fuzzy sets classifier and 

principal components is demonstrated by examining the 

cross-correlations between the individual probability sets. The 

maximum correlation (37%) occurs between Set A and Set J. Sets H 

and I are not positively correlated with any of the other sets. 

Sets A and J both predominantly represent slightly different 

conditions of stratus cloud. The lack of a requirement that the 
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two sets be uncorrelated allows the gradation of cloud height and 

thickness to be clearly represented in these two sets. On the 

other hand, the ability of the fuzzy sets classifier to identify 

basically uncorrelated classes such as open water and sea ice is 

demonstrated in Sets H and I. 

Application of principal components analysis with fuzzy sets 

as variables and individual pixels as observations allows us to 

identify similarities among the sets more quantitatively. Using 

unrotated components, eight components are required to account for 

94% of the variance present in the sets, while the first five 

components describe 69% of the variance. The large number of 

components required to represent the information content of the 

fuzzy sets confirms that each set provides a considerable amount 

of unique information. Comparison of the factor loadings in each 

set suggests that Principal Component 1 discriminates between 

different conditions of stratus cloud and open water (high loadings 

for Sets A and J, and negative loading for Set I. A similar type 

of interpretation can be made for Component 2, which appears to 

represent high cloud, with the greatestpositive loadings for Fuzzy 

Sets E and G). With the exception of Components 1 and 2, no 

loadings exceed 50%. The relationships between the fuzzy sets as 

variables is perhaps slightly masked by the potential confusion of 

unique and common variances inherent in principal components. 

However, the component-derived groupings agree well with the 

correlations in the cross-correlation matrix. As a final 

confirmation of the uniqueness of each fuzzy set, a Varimax 
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rotation was applied to the principal components. Results of the 

rotation approach the desired ideal of simple structure, with a 

loading of nearly 1.0 on one set per component, again suggesting 

that large correlations are not found between groups of fuzzy sets. 

5.2 Bupervised Approach 

A supervised approach may be taken if class means are known. 

In this case, the algorithm may be modified to simply calculate the 

memberships for each pixel in each of the known classes. The 

memberships are still a function of the weighted distance to the 

class means, but the class means are no longer determined by the 

algorithm. These are instead supplied in a manner analagous to 

using training sites to provide spectral statistics for a 

supervised classification. This approach is very fast (30-40 times 

faster than unsupervised) as it requires only one pass through the 

data. 

We have found that class means must be very carefully 

selected, and that some experimentation may be necessary to reach 

a realistic solution. For example, Run #7 in Table 1 was a 

supervised classification where a seven-cluster solution was 

specified and class means were provided for snow-covered and snow- 

free land, sea ice, open water, high cloud, middle cloud, and low 

cloud in AVHRR channels 1, 3, and 5. Snow-covered land did not 

uniquely define any fuzzy set, but was instead grouped with low 

cloud because of similar albedos and brightness temperatures. 

While this problem may be solved by adjusting the class means, 



18 

perhaps a better solution would be to add a weighting function to 

the algorithm so that features which better define a particular 

class will be more influential in the calculation of membership 

coefficients. 

5.3 Maximum Likelihood Classification 

To provide a source of comparison to the fuzzy sets approach, 

the data shown in Figure 1 were classified using an unsupervised 

maximum likelihood (ML) procedure. The results are shown in Figure 

6. The unsupervised clustering approach (with all image pixels 

taking part in the definition of spectral signatures) yielded 21 

clusters, with four clusters accounting for 67% of the area. None 

of the remaining 17 clusters represented more than one percent of 

the image. Sixteen percent ofthe scene remained unclassified, and 

an additional 12% of the image pixels fell in more than one 

cluster. Misclassifications are noted for indistinct classes, 

specifically low concentration ice (grouped with low clouds) , 
optically thin clouds, and for boundary pixels between different 

classes. 

The restrictive effects of the hard classifier vs. fuzzy sets 

are apparent in the large number of unclassified pixels. Most high 

and middle cloud layers were left unclassified, as was the ice cap 

on Novaya Zemlya. For indistinct classes common in polar cloud 

analyses, the fuzzy sets approach avoids errors of commission and 

omission that occur when such indistinct values are forced into 

the nearest class in spectral space. 
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6. Discussion 

Sets A, B, D, E, F, G, and J of the fuzzy sets classification 

each represent a separate cloud class, although other surface/cloud 

mixtures sometimes had large membership values in these classes. 

A map of cloud classes constructed from the maximum membership 

value for each pixel is shown in Figure 7. These results generally 

agree with the manual classification in Figure 2 and the maximum 

likelihood classification shown in Figure 6. Discrepancies occur 

with middle and high clouds (unclassified in the ML method), and 

with cumulus which, in the ML procedure, is grouped with an 

optically thin stratus deck over sea ice. 

While there were some obvious differences in number of cloud 

classes and the cloud types that each class represented in the 

three methods, the total cloud amount computed for each procedure 

was similar. Forthe manual and ML classifications, cloud fraction 

is simply the proportion of cloud pixels in the image. In the ML 

results, this was computed for only those areas labeled as cloud 

in Figure 6, and again with the unclassified areas included. For 

the fuzzy sets results, two methods of computing cloud fraction 

were examined. In both cases, the membership values of each pixel 

in each of the cloud classes were summed. This may be considered 

an estimate of a pixel's "cloudiness". Then, in the first case, 

for each threshold from 0.4 to 0.9 in increments of 0.1, a pixel 

was considered cloud-filled if its cloudiness exceeded the 

threshold. Cloud fraction was expressed as the proportion of 
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cloudy pixels in the image. In the second case, the pixels were 

considered partially cloud-filled, with cloud fraction being the 

sum of all cloudiness values that exceeded the threshold, as a 

proportion of the total number of pixels in the image. Cloud 

fractions computed for the manual classification, ML method, and 

the fuzzy sets are given in Table 2. Best agreement between the 

methods occurs when the threshold is high (0.7) if pixels are 

considered completely cloud-filled, or in the midrange (0.4-0.6) 

is pixels are treated as partially cloud-filled. 

7 .  Conclusion 

The fuzzy sets method of classification was successfully 

adapted to the analysis of multispectral satellite imagery. The 

ability of the fuzzy sets approach to address indistinct spectral 

classes by calculating class memberships as opposed to the 

"in-or-out" decision required of hard classifiers is particularly 

well suited to the range of albedos and physical temperatures 

encountered in the analysis of ice and cloud conditions in the 

polar regions. 

Application of the fuzzy sets classifier to an AVHRR image 

containing sea ice and cloud of varying condition and opacity 

yielded ten membership sets containing contextually and 

statistically unique information. Interpretation of intensities 

in images of these sets demonstrates the ability of the fuzzy sets 

to describe well-defined classes (such as open water and land) as 

well as classes that fall in intermediate spectral space (e.g., 
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ice cap, thin stratus over water, or sea ice of varying 

concentration). Identification of such fuzzy areas in taxonomic 

space provides information on where data in additional spectral 

regions are required for accurate classification. Future work will 

use the fuzzy sets approach as a tool to help "tune" hard 

classifiers such as unsupervised clustering and bispectral 

threshold methods for cloud and ice mapping in the polar regions. 
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Appondix 

Following Bezdek et al. (1984), the Fuzzy c-Means (FCM) 

algorithm is: 

(1) Fix: c, 2<c<n-1 
m. l<m<=; the larger the m, the fuzzier the solution; 

many practitioners use m=2. 
A, the inner product norm metric for RP, where p is 

the number of attributes 
Uo, the initial fuzzy c-partition 
e, the value for the stopping criterion (~=0.01 gives 

reasonable convergence.) 

Repeat until convergence (step 4): 

(2) Calculate the c fuzzy group centroids, vi 

vi = c (Uik)%k / c (Uik)' for all i 
n n 

k=l k=l  

(3) Update U' using 

2/ (m-1) 

3 
C dik 

Uik = 1/[ C (---) 
j=1 djk 

which may be rewritten in the more computationally efficient 
form: 

The measure of dissimilarity, di;, is given as 
1 (dik)' = (xk - vi) A(xk - vi) 

where A is the inner product norm metric. 

(4) Compare U'+l to U'. I f  the difference between all 
corresponding elements is less than or equal to e ,  then 
stop. Otherwise, set U' = and return to step (2). 
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Table 1 

Results of FCM tests for varying m and c. 
Scaling norm is diagonal in all cases. 



Table 2 

Cloud fraction computed for three classification methods. 

Manual Fuzzy Sets (Threshold:) 
Interp. M L ~  MLz 0.4 0 . 5  0.6 0.7 0 . 8  0.9 .......................................................... 

0 . 5 3  0.40 0 . 5 5  0.69 0 . 6 5  0 . 6 2  0 .57  0.46 0.19; 
0 . 5 6  0.54 0 . 5 2  0.49 0.40 0.18 --------------------.-------.----------------------------- 

'- Classes labeled as cloud only. 
2. 

3. Pixels treated as completely cloud-f illed. 
4- Pixels partially cloud-filled. 

Including unclassified areas as cloud. 



, 

Figure 1. Study area centered on Novaya Zemlya (approximately 
75%,  60'E) and containing2the Kara and Barents Seas. 
The area covers (1250 km) . AVHRR channels 1, 3, 
and 5. 

Figure 2. Manual interpretation of the area shown in Figure 1. 
Cloud classes: LCLI - low cloud over sea ice; LCLW - 
low cloud over water; MCL - middle cloud; HCL - high 
cloud, Cu - cumulus. 

Figure 3. Bispectral plots of AVHRR data for the arctic. 
means k two standard deviations are shown as 
rectangles. 
a) visible vs. near-infrared; b) visible vs. thermal. 

Class 

Figure 4. Plot of the partition coefficient, F (solid line), and 
entropy, H (broken line), as a function of the number of 
classes. In all cases, m=2.0. 

Figure 5. Ten classes produced by the FCM algorithm from the 
the study area data. 
of classes. 

See text for interpretation 

Figure 6. Study area as classified by a unsupervised maximum 
likelihood procedure. 
for Figure 2. Additional class codes: U - 
unclassified, M - mixed classes, low cloud is defined 
by two classes: LCLl and LCL2. 

Cloud classes are as defined 

Figure 7. Fuzzy sets classification of the study area. The class 
to which a pixel belongs is the one with the largest 
membership value. Cloud classes: LCLI - low cloud over 
sea ice; LCLW - low cloud over water; MCL - middle cloud; 
HCL - high cloud, Cu - cumulus. 

*** NOTE TO REVIEWERS *** 
Due to the high cost of producing prints, only one set of Figures 
1 and 5 has been sent to the editor. These have been photocopied 
to the best of our ability and included here, but some grey levels 
have been lost. We feel that these are adequate for conveying the 
point of "partial memberships" in each class, but we ask that you 
keep in mind the unavoidable reduction in the quality of these 
copies. 
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